> > > > Intel gibt Details zu Nehalem bekannt

Intel gibt Details zu Nehalem bekannt

Veröffentlicht am: von
In einer Pressekonferenz gab Intel heute erste Details zur Nehalem-Architektur bekannt. Nehalem besitzt neben den bislang bereits angekündigten oder vermuteten Features ein skalierbares Design, welches es Intel ermöglicht, Prozessoren mit zwei bis acht Kernen auf dem Nehalem-Design zu erstellen. Die ersten Prozessoren - voraussichtlich monolithische Quad-Cores - sollen im vierten Quartal 2008 in Produktion gehen. Neben einem integrierten Memory-Controller, der 3-Channel-DDR3 unterstützt, einem verbesserten Hyperthreading und einem Quick-Path-Interconnect als neue I/O-Anbindung besitzt Nehalem auch einen Shared-Inclusive-L3-Cache. Beim Quad-Core wird dieser eine Größe von 8 MB besitzen. Sämtliche Nehalem-Bestandteile sind dynamisch an- und abschaltbar, weshalb Nehalem wohl auch beim Stromverbrauch punkten kann. Weitere Infos haben wir unter "Read More" zusammengefasst.



Der Nehalem-Wafer: Zu erkennen ist ein Prozessor-Die mit vier Kernen und vier großen Cachebereichen mit je 2 MB L3-Cache. Die Kerne sind SMT-Fähig, somit ist dieser Quad-Core in der Lage, 8 Threads gleichzeitig zu bearbeiten. Das Memory-Interface befindet sich am oberen Rand des Dies


Nehalem basiert auf der Core-Architektur, die jedoch deutlich aufgebessert wurde. So ist Nehalems Architektur zwar weiterhin 4-fach skalar, jeder Kern kann also 4 Befehle gleichzeitig bearbeiten - Intels Netburst-Architektur und sämtliche aktuelle AMD-Prozessoren können nur 3 Befehle gleichzeitig abarbeiten. Verbessert wurden die Anzahl der gleichzeitig abzuarbeitenden µOps, neue Algorithmen für Speicherzugriffe, die "unaligned" stattfinden, implementiert, die Synchronisierung der Kerne überarbeitet und die Recheneinheit für die Sprungvorhersage verbessert.

SMT (Simultaneous Multi-Threading) findet man ebenso wiederum im Nehalem, zuletzt besaßen alle Netburst-Prozessoren diese Technik. Die Technik hilft, die Prozessorkerne mit einer besseren Energieeffizienz zu nutzen, im Vergleich zur Netburst-Architektur wurde Hyperthreading hingegen noch einmal verbessert und kann aufgrund der Caches und der höheren Bandbreite effizienter arbeiten.




Hyperthreading is back: Aufgrund der HT-Technik können in einem 2-Way-Server mit zwei Quad-Core-Prozessoren sogar 16 Threads gleichzeitig bearbeitet werden.


Interessant ist auch der Cache des Nehalem. Nehalem bekommt neben dem auch bei der Core-Architektur zu findenden L1-Daten- und Instruktions-Cache von je 32kB (µOps) einen 256 kB großen L2-Cache pro Kern. Einen Shared-L2-Cache wie bei der Core-Architektur gibt es also nicht mehr, jeder Cache hat seinen eigenen L2-Cache. Jedoch steht allen Kernen ein gemeinsamer L3-Cache mit 8 MB zur Verfügung, der die Daten der einzelnen Kerne "inklusive" speichert. Dies bedeutet, dass Daten im L1- und L2-Cache der Prozessoren auch im L3-Cache vorhanden sind. Dies mag als Verschwendung des kostbaren Cache-Speichers erscheinen, hat aber den entscheidenden Vorteil, dass ein Kern nur mit dem L3-Cache kommunizieren muss, wenn er Daten benötigt. Sind die Daten dort nicht vorhanden, liegen sie auch nicht in einem der L1- und L2-Caches der anderen Kerne. Somit wird eine Cache-Kohärenz erreicht bei gleichzeitig hoher Bandbreite.

Die Architektur mag einem vom AMD Phenom bekannt vorkommen, hier ist eine ähnliche Architektur für die Caches implementiert. Auch den Translation-Lookaside-Buffer (TLB) besitzt Intel in einer 2-Level-Ausführung - hoffendlich ohne Bug.




Hyperthreading is back: Aufgrund der HT-Technik können in einem 2-Way-Server mit zwei Quad-Core-Prozessoren sogar 16 Threads gleichzeitig bearbeitet werden.


Auch neue Chipsätze benötigt der Nehalem - ebenso wie einen neuen Sockel. Nehalem wird aufgrund des 25,6 GB/s schnellen Quick-Path-Interconnects (QPI) eine deutlich gesteigerte Bandbreite aufweisen, zudem laufen die Speicherzugriffe auf dem dedizierten Memory-Interface. Der Tylersburg-Chipsatz kann auch zwei QPI-Links zur Verfügung stellen und somit Dual-Sockel-Systeme mit zwei Nehalem-Prozessoren ermöglichen, die dann auch untereinander über ein QPI-Interface kommunizieren können. Für Desktop-Systeme wird der Typersburg-Chipsatz jedoch nur einen QPI-Link zur Verfügung stellen.

Der integrierte Speichercontroller des Nehalem unterstützt DDR3 mit bis zu 1333 MHz in einem Triple-Channel-Interface, insgesamt können drei Speichermodule pro Channel eingesetzt werden. Boards mit neun Speichersockeln wird es wohl aber eher nur im Serverbereich geben, im Desktop-Segment werden wohl aus ATX-Platzgründen nur drei oder sechs Slots üblich sein. Durch die Integration des Speichercontrollers wird die Latenz deutlich abgesenkt. Der Speichercontroller könnte dabei Intel einen ähnlichen Performance-Boost verschaffen, wie AMD ihn seinerzeit zur Einführung der Athlon-64-Architektur erreichen konnte.




Der Tylersburg-Chipsatz verkommt aufgrund des integrierten Memory-Controllers zu einem puren I/O-Hub.


Noch nichts sagte Intel zu der möglicherweise auch integrierten Grafik im Kern des Nehalem. Auch genaue Daten zum Erscheinungstermin, der TDP und dem Stromverbrauch, der Taktung und der tatsächlichen Performance gab man noch nicht. Nur einen Ausblick auf das Jahr 2009, denn dann folgt der nächste "Tick" des Tick-Tock-Modells: Die Nehalem-Architektur wird auf 32nm geshrinkt - der Codename für diese Architektur ist "Sandy Bidge".

Social Links

Tags

es liegen noch keine Tags vor.

Zu diesem Artikel gibt es keinen Forumeintrag

Das könnte Sie auch interessieren:

  • AMDs Ryzen 7 3700X und Ryzen 9 3900X im Test

    Logo von IMAGES/STORIES/2017/AMDRYZEN93900X

    Heute ist es endlich soweit: AMD bläst zum Großangriff. Die Zen-2-Architektur versetzt AMD offenbar in die Situation, endgültig mit dem Konkurrenten Intel aufzuschließen. Mit Zen, Zen+ und der AM4-Plattform hat AMD über zwei Jahre die Basis zum Erfolg geschaffen. Nun will man den... [mehr]

  • AMD Ryzen 5 3600 im Test: Ohne X noch viel besser

    Logo von IMAGES/STORIES/2017/AMD_RYZEN_5_3600_TEST-TEST

    Gegenüber dem AMD Ryzen 5 3600X aus unserem letzten Test, der trotz seiner Einstufung in die Mittelklasse ältere Topmodelle schlägt, ist der AMD Ryzen 3600 ohne das X-Kürzel nur 200 bis 300 MHz niedriger getaktet und mit einer TDP von 65 W sparsamer klassifiziert, was einen... [mehr]

  • AMD Ryzen 5 3600X im Test: 265-Euro-CPU schlägt ältere Flaggschiff-Modelle

    Logo von IMAGES/STORIES/2017/RYZEN_5_3600X_REVIEW-TEASER

    Mit dem Ryzen 9 3900X und dem Ryzen 7 3700X ist AMD seinem Konkurrenten wieder mächtig auf die Pelle gerückt und macht ihm selbst im High-End-Bereich mit einer hohen Anwendungs- und Spiele-Leistung zu einem deutlich günstigeren Preis das Leben schwer. Doch auch in den unteren Preis- und... [mehr]

  • Insider-Gerüchte: Intel streicht 10-nm-Pläne für den Desktop komplett

    Logo von IMAGES/STORIES/2017/INTEL

    Aus Insiderkreisen haben wir einige exklusive Informationen zu zukünftigen Desktop-Prozessoren von Intel erhalten. Die Quelle hat sich in der Vergangenheit zu CPU-Themen bereits mehrfach aus treffsicher erwiesen. Dennoch sollte wie bei allen Gerüchten dieser Art eine gewisse Vorsicht an den... [mehr]

  • 400 gegen 2.000 Euro: Core i7-9700K gegen Core i9-9980XE im Test

    Logo von IMAGES/STORIES/2017/INTEL-CORE-I9

    Heute wagen wir einmal einen ungewöhnlichen Vergleich: Ein Intel Core i7-9700K gegen einen Core i9-9980XE. Diese beiden Modelle haben neben der Tatsache, dass sie beide von Intel stammen und auf der Skylake-Architektur basieren, wenig miteinander zu tun. Doch wir wollten uns einmal anschauen, wo... [mehr]

  • AMD Ryzen 5 3400G im Test: Weniger Änderungen als erwartet

    Logo von IMAGES/STORIES/2017/AMD_RYZEN_5_3400G-TEASER

    Im letzten Jahr erwiesen sich die Raven-Ridge-APUs als gute Alternative, wenn man sich einen sparsamen und günstigen Office-Rechner zusammenbauen wollte. Die Kombination aus Zen-Prozessor und Vega-Grafiklösung erwies sich als durchaus leistungsfähig für den Alltag. Ob dies auch für die... [mehr]