> > > > GTC 2016: Alle Details zur Pascal-Architektur

GTC 2016: Alle Details zur Pascal-Architektur

DruckenE-Mail
Erstellt am: von

nvidia gtcNun endlich war es soweit und NVIDIA hat erste Details zur Pascal-Architektur enthüllt. Auch ein erstes Produkt gibt es schon: Den GPU-Beschleuniger Tesla P100. In direkter Folge der Keynote hat NVIDIA nun weitere Details zur Pascal-Architektur veröffentlicht, die wir einmal zusammenfassen wollen. Der Fokus liegt dabei konkret auf der GP100-GPU mit Pascal-Architektur. Wer sich zunächst nur einen groben Überblick verschaffen möchte, der findet im Artikel zur Keynote alle wichtigen Informationen.

Noch ein paar Worte zur Fertigung. NVIDIA lässt bei TSMC in 16 nm fertigen. Der Chip hat eine Größe von 610 mm2. NVIDIA gibt eine Anzahl von 15,3 Milliarden Transistoren für die GPU an, während das gesamte Package 150 Milliarden Transistoren beinhalten soll. NVIDIA zählt hier allerdings auch Komponenten wie den Speicher und die Interconnects mit. Den HBM2 bringt NVIDIA auf dem Interposer unter und bindet darüber auch die vier Speicherchips an. Die Interposertechnologie stammt aus dem Hause TSMC und damit ist NVIDIA nicht auf einen weiteren Dienstleister für die Interposertechnologie angewiesen.

NVIDIA Tesla P100
NVIDIA Tesla P100

Die Pascal-Architektur

Weiterhin ein zentraler Bestandteil der Architektur sind die Streaming Multiprocessors (SM). Der Aufbau sieht Graphics Processing Clusters (GPCs), Streaming Multiprocessors (SMs) und Speichercontroller vor, die in einem bestimmten System organisiert sind. GP100 besteht aus sechs GPCs, diese jeweils 10 SMs und diese wiederum besitzen jeweils 64 Shadereinheiten. Damit kommt damit auf insgesamt 3.840 Shadereinheiten (6x10x64). Dies gilt allerdings nur für den Vollausbau von GP100, denn auf der Tesla P100 kommen nur 56 SMs zum Einsatz, was wiederum in 3.584 Shadereinheiten resultiert. Acht Speichercontroller sind um die GPCs organisiert und haben ein 512 Bit breites Speicherinterface. Insgesamt bindet die GP100-GPU den HBM2 also mit 4.096 Bit an. Neben den 64 Shadereinheiten befinden sich in jedem SM auch noch vier Textureinheiten, so dass wir hier insgesamt auf 244 Textureinheiten kommen.

Die technischen Daten der GP100-GPU im Überblick
GPU GP100 Fiji XT GM200
Fertigung 16 nm 28 nm 28 nm
Transistoren 15,3 Milliarden 8,9 Milliarden 8 Milliarden
Speichertakt 737 MHz 500 MHz 1.750 MHz
Speichertyp HBM2 HBM GDDR5
Speichergröße 16 GB 4 GB 6 GB
Speicherinterface 4.096 Bit 4.096 Bit 384 Bit
DirectX-Version 12 12 12
Shadereinheiten 3.840 4.096 2.816
Textureinheiten 224 256 176
ROPs - 64 96
Typische Boardpower 300 W 275 W 250 W
SLI/CrossFire - CrossFire SLI

Nicht unerwähnt ließ NVIDIA eine weitere Steigerung bei der Effizienz. Diese ist auf der einen Seite auf die Fertigung in 16 nm FinFET zurückzuführen. Änderungen in der Architektur der SMs sollen aber zu weiteren Verbesserungen beigetragen haben. Insgesamt nennt NVIDIA für die Tesla P100 aber dennoch eine maximale Leistungsaufnahme von 300 W.

Erstaunlich sind sicherlich die Taktraten der GP100-GPU auf der Tesla P100. Diese gibt NVIDIA mit einem Basis-Takt von 1.328 und einem Boost-Takt vn 1.480 MHz an. Natürlich sind durch die kleinere Fertigung höhere Taktraten möglich. Für eine GPU auf einer Tesla-Beschleunigerkarte sind die 1.480 MHz aber doch recht erstaunlich.

In der Folge schauen wir uns den Aufbau einer Streaming Multiprocessors noch einmal etwas genauer an. Bereits angesprochen haben wir die 64 Shadereinheiten pro SM. Dabei handelt es sich um FP32-Recheneinheiten. Maxwell und Kepler hatten 128 bzw. 192 FP32-Rechenheiten pro SM und legten den Fokus daher klar auf die Single-Precision-Performance. Jeder SM in der GP100-GPU ist in zwei Processing Blocks aufgeteilt. Jeder davon hat 32 Shadereinheiten, einen Instruction Buffer, einen Warp Scheduler und zwei Dispatch Units. Während die SMs in Pascal also die Hälfte an Shadereinheiten im Vergleich zu Maxwell tragen, sind die Größe der Register, Warps und Thread Blocks identisch geblieben.

Blockdiagramm der GP100-GPU und der SMsBlockdiagramm der GP100-GPU und der SMs

Blockdiagramm der GP100-GPU und der SMs

Da sich die Anzahl der SMs aber dramatisch erhöht hat, ist auch die Größe der Register insgesamt stark angestiegen. NVIDIA hat auch den Datenpfad bzw. dessen Organisation optimiert. Letztendlich konnte NVIDIA die Die-Fläche reduzieren und auch die Leistungsaufnahme in diesem Bereich ist deutlich geringer. Dies ist einer der Bereiche, der zur Effizienzsteigerung geführt hat. Die neue Scheduler-Architektur sorgt für eine bessere Auslastung der Pipelines und jeder Warp Schedular kann zwei Warp Instructions pro Takt zuteilen.

Höhere Double-Precision-Performance

Ein Fokus bei der Entwicklung der Pascal-Architektur, die drei Jahre und zwischen 2 und 3 Milliarden US-Dollar gekostet hat, lag bei der Double-Precision-Performance sowie der Leistung bei Anwendungen, die für Deep-Learning-Netzwerke wichtig sind.

Rechenleistung von GPU-Beschleunigern im Überblick
Modell NVIDIA Tesla P100 NVIDIA Tesla K80 NVIDIA Tesla M40 AMD FirePro S9300 X2 AMD FirePro S9150
GPU GP100 2x GK210 GM200 2x Fiji Hawaii
FP64 5,3 TFLOPS 2,91 TFLOPS 214 GFLOPS 800 GFLOPS 2,53 TFLOPS
FP32 10,6 TFLOPS 8,74 TFLOPS 6,844 TFLOPS 13,9 TFLOPS 5,07 TFLOPS
FP16 21,2 TFLOPS - - - -
FP64/FP32-Verhältnis 1/2 1/3 1/32 1/16 1/2
Speichertyp HBM2 GDDR5 GDDR5

HBM

GDDR5
Speichergröße 16 GB 2x 12 GB 12 GB 2x 4 GB 16 GB
Speicherinterface 4.096 Bit 384 Bit 384 Bit 2x 4.096 Bit 512 Bit
Speicherbandbreite 720 GB/s 2x 240 GB/s 288 GB/s 2x 512 GB/s 320 GB/s
Shadereinheiten 3.840 4.992 3.072 8.192 2.816

Für die deutlich bessere Double-Precision-Performance hat NVIDIA die Verhältnisse für die Funktion von FP64 und FP32-Recheneinheiten geändert. Während dieses bei der Kepler-Architektur noch bei 1/3 lag und in der vorherigen Maxwell-Architektur 1/32 betrug, sieht NVIDIA für die Pascal-Architektur ein Verhältnis von 1/2 vor.

Für Deep-Learning-Netzwerke sind Half-Precision-Berechnungen bzw. FP16-Berechnungen besonders wichtig und daher sieht hier NVIDIA auch ein Verhältnis von 1/2 zu den FP32-Berechnungen vor. NVIDIA hat das Handling dieser FP16-Berechnungen geändert, um von den dedizierten FP32-Kernen profitieren zu können. Dazu werden FP16-Berechnungen zusammengelegt, damit sie auf FP32-Kernen ausgeführt werden können. Damit die FP16-Berechnungen zusammengelegt werden können, müssen sie allerdings die gleichen Operationen ausführen. Zum Beispiel können nur zwei Additionen oder zwei Multiplikationen zusammengeführt werden. FP16-Operationen sind für Spielen bzw. dort der Verarbeitung von Texturen wichtig oder aber bei der Analyse von Foto- und Videodaten.

GP100 Compute-Performance
GP100 Compute-Performance

HBM2

Die Pascal-Architektur sieht auch einige Optimierungen vor, die der Verwendung von HBM2 zu Gute kommen. Damit ist aber nicht nur die Breite des Speicherinterfaces gemeint, die mit 4.096 Bit ordentlich angewachsen ist, sondern auch das Handling von Atomic Speicheroperationen. Dabei handelt es sich um Schreib- und Lesezugriffe auf den Speicher. Bereits Kepler sah hier ein großes Optimierungspotenzial vor und mit Fermi machte NVIDIA einen weiteren Schritt zur Implementierung dieser Atomic Speicheroperationen. Mit Maxwell führte NVIDIA die native Hardware-Unterstützung für Shared Memory Atomic Operations in 32 Bit Integer sowie 32- und 64-Bit Compare-and-Swap (CAS) ein. Mit GP100 fügt NVIDIA nun noch FP64 Atomic Adds hinzu. Bei vorherigen Architekturen musste dies noch durch Compare-and-Swap Loop durchgeführt werden, was natürlich nicht so schnell sein konnte, wie eine native Lösung.

Tesla-P100-Modul in der Vorder- und RückansichtTesla-P100-Modul in der Vorder- und Rückansicht

Tesla-P100-Modul in der Vorder- und Rückansicht

Der HBM2 selbst stammt aus dem Hause Samsung. NVIDIA verwendet vier HBM2-Chips mit einer Speicherkapazität von jeweils 4 GB. Diese Speicherchips bestehen aus vier Lagen und diese werden mit über 5.000 TSVs (Through Silicon Vias) und Microbumbs miteinander verbunden. Ein Interposer stellt die Verbindung zwischen Speicherchips und GPUs her. Auf die Interposer-Technologie sind wir in einem gesonderten Artikel bereits genauer eingegangen. Das komplette Packet aus GPU, HBM2 und Interposer befindet sich in einem 55 x 55 mm großen BGA-Package.

Über ein 4.096 Bit breites (4x 1.024 Bit) Speicherinterface bindet NVIDIA die Speicherchips an. Die Gesamtkapazität beträgt wie gesagt 16 GB und die Fehlerkorrektur ECC ist im Speicherstandard bereits integriert. Damit ist auch keine Reduzierung der Speicherkapazität durch ECC vorhanden und auch die Leistung wird nicht eingeschränkt. NVIDIA spricht von einer Speicherbandbreite von 720 GB/s und damit takten die HBM2-Chips mit etwa 740 MHz.

NVLink

Neben der GPU selbst und dem HBM2 ist NVLink das dritte wichtige Feature für GP100 bzw. die Pascal-Architektur. Im Consumer-Bereich wird NVLink allerdings keine Rolle spielen. Dennoch ist es ein Bestandteil und daher werden wir auch auf NVLink noch einmal eingehen. NVLink soll die Kommunikation zwischen GPUs deutlich beschleunigen. 16 PCI-Express-3.0-Lanes erreichen eine Bandbreite von 15,75 GB pro Sekunde bzw. 128 GT/s. Intel bietet bei seinen Knights Landing Xeon Phi Beschleunigern solche mit Omni Path Interconnect an, was den Bedarf nach schnellen Interconnects unterstreicht. NVLink ermöglicht zudem eine Implementierung von Unified Memory auf allen miteinander verbundenen GPUs und dem dazugehörigen Speicher. Eine Tesla P100 kann damit auf Daten zugreifen, die im Speicher einer anderen Tesla P100 liegen.

NVLink wiederum basiert auf einem neuen High-Speed Signaling interconnect (NVHS). Eine NVHS-Verbindung mit einer Bandbreite von 20 GBit/s wird über ein Differential Connection ermöglicht. Acht dieser Connections ergeben einen Sub-Link. Zwei Sub-Links stellen wiederum einen Link dar und eben ein solcher Link stellt die Verbindungen zwischen zwei GPUs (GPU-to-GPU oder GPU-to-CPU) sicher. Ein solcher Link hat eine Bandbreite von 40 GB/s in beide Richtungen und für den eigentlichen Datentransfer stehen 97 Prozent dieser Bandbreite zur Verfügung. Damit ist der Overhead sehr gering.

Eine GP100-GPU verfügt über vier Links. Diese Links können auch zu Gangs zusammengefasst werden. Im Falle einer GP100-GPU bedeutet dies eine maximale Bandbreite für eine Verbindung von 160 GB/s. Theoretisch sind aber auch vier einzelne Links oder zwei Gangs zu jeweils 80 GB/s denkbar. Welche Art von NVLink-Struktur in einem Server genutzt wird, hängt davon ab, welchem Einsatzzweck diesen dienen sollen.

NVLink-Netzwerk für die Verbindung von acht Tesla P100
NVLink-Netzwerk für die Verbindung von acht Tesla P100

Ein Beispiel ist die Verbindung von acht GP100-GPUs, wie sie auf der Tesla P100 verbaut sind. In Quads zu jeweils vier Tesla P100 aufgeteilt stellen diese jeweils eine Verbindung untereinander her, während die beiden Blöcke ebenfalls via NVLink miteinander verbunden sind. Die Verbindung zu den zwei CPUs wird in diesem Fall über PCI-Express realisiert.

NVLink-Netzwerk für die Verbindung von vier Tesla P100
NVLink-Netzwerk für die Verbindung von vier Tesla P100

IBM ist einer der ersten Hersteller, der NVLink in seine CPUs eingebaut hat. Entsprechende Server mit Tesla P100 Beschleunigern verbinden sich untereinander weiterhin mittels NVLink – in diesem Fall gilt dies aber auch für CPUs.

Unified Memory

Unified Memory ist kein neues Feature bei den GPUs, allerdings hat NVIDIA die Pascal-Architektur angepasst, damit der Speicher über weitere Bereiche eines solches Systems erreichbar ist. Unified Memory wurde mit CUDA 6 eingeführt, besitzt bei der Kepler- und Maxwell-Architektur aber noch einige Einschränkungen. So kann die CPU nicht auf den Speicher der GPU zugreifen, ohne das dieser zuvor synchronisiert wird. Ein gleichzeitiger Zugriff auf einen bestimmten Bereich des Speichers war ebenso nicht möglich. Außerdem war die Größe des Unified Memory auf die des Grafikspeichers limitiert.

Mit Pascal bzw. CUDA 8 führt NVIDIA einen virtuellen Speicher ein, der einen Adressraum von 49 Bit vorzuweisen hat. Damit ist dieser groß genug, um sämtlichen Speicher von CPUs und GPUs in einem System zu umfassen. Der Unified Memory ist also nicht mehr auf die Größe des Grafikspeichers limitiert. NVIDIA spricht von einer maximalen Größe von 192 TB für den Unified Memory.

Neben der reinen Speichergröße bietet der Unified Memory in der aktuellen Version auch noch einige Funktionen, die das Handling mit dem Speicher vereinfachen. Page Faulting ist eine der neuen Funktionen. GPUs und CPUs können bestimmte Speicherbereiche eigenständig verwalten, ohne das eine stände Synchronisation notwendig ist. Davon nicht betroffen ist die Kohärenz des Speichers, die in jedem Fall gegeben ist. Entwickler müssten allerdings aufpassen, dass sie im Falle von Page Faulting keine Daten wegwerfen, die andere CPUs und GPUs womöglich noch benötigen. Dann muss dennoch zunächst eine Synchronisation erfolgen, um einen Datenverlust zu verhindern.

Unified Memory
Unified Memory

Bestimmte Betriebssystem nutzen den Unified Memory auch derart, dass dieser Speicher der Default-Speicher ist. Damit können auch Standardanweisungen wie Malloc oder New verwendet werden. Auch bei den Pointern sind keine Anpassungen notwendig, da der Unified Memory für das Betriebssystem komplett zugänglich ist. Speicherarrays können dabei auch größer werden, als es der eigenen Speicher der CPU und GPU zulassen würden – es wird einfach der Speicher der anderen CPUs und GPUs verwendet. Damit können auch extrem große Datenmengen verarbeitet werden.

Soweit zunächst einmal die Details zur Pascal-Architektur und der Tesla P100 als erste Karte mit dieser GPU. NVIDIA produziert nach eigenen Angaben bereits Tesla P100 Karten und liefert diese auch schon in Kürze aus. Spannend ist nun die Frage, ob und wann mit GeForce-Karten mit GP100-GPU zu rechnen ist. HBM2 dürfte hier noch immer der limitierende Faktor sein. Wahrscheinlich wird zunächst eine kleinere GPU auf Basis der Pascal-Architektur erscheinen, die dann auch zunächst auf GDDR5 oder GDDR5X setzen wird. Details dazu sind auf der GPU Technology Conference aber nicht zu erfahren, da NVIDIA aktuell noch nicht über solche Produkte spricht.

Social Links

Ihre Bewertung

Ø Bewertungen: 5

Tags

Kommentare (55)

#46
Registriert seit: 24.10.2002
Wels
Bootsmann
Beiträge: 559
Zitat BrahmandYaatra;24484054
Was sagt ihr eigentlich hierzu? Ich wunderte mich dass es noch keiner gepostet hat. Es wird vermutet dass sie es Ende Mai vorstellen, die Consumer-Karten, wann die released werden ist offen. Aber vermutlich noch dieses Jahr, die dicken dann nächstes (>TI)


Auf der GS-Seite liest man, dass sie die 980 und 980 Ti im Mai auslaufen lassen wollen, die 970 erst im Juni, ich denke also, dass die Reihenfolge stark/schwach eher umgedreht ist. Wobei der "BigMac", also die "neue" Titan natürlich erst hinterher kommt.
#47
customavatars/avatar43872_1.gif
Registriert seit: 31.07.2006

Fregattenkapitän
Beiträge: 2857
Zitat Long John;24477793
Eben.
Man hat bei der Entwicklung von GP100 komplett andere Schwerpunkte gesetzt als noch bei den Vorgängern und entsprechend andere Kompromisse begangen. Birnen und Äpfel.
Was die neue Generation an tatsächlicher Mehrleistung bietet, sehen wir erst wenn tatsächlich etwas kommt, was auch für den gleichen Einsatz gedacht (und optimiert) ist wie die schon existierenden GPUs. Z.B. eine GPU die wirklich für den Einsatz in eine Graphikkarte gedacht ist und nicht als Coprozessor in Großrechnern.


Ich glaub du überschätzt das ein klein wenig. Das ist ein Pascal, der durch separate FP64 erweitert wurde und mit mehr I/O-Gedöns sowie echt viel Speicherbandbreite kombiniert ist, aber es bleibt ein Pascal. Bei Fermi hat NV dafür gesorgt, dass die Mainstreamchips mehr TMUs haben, die verzögerten sich dadurch ein halbes Jahr - das ist heute unnötigt, da die TMU-Leistung nicht mehr so gefragt ist. Bei Kepler hat man mit der Mainstream-Architektur angefangen und fast ein weiteres Jahr gebaucht, bis man Kepler in einer Organisationsform hatte, damit ein großer Profichip überhaupt möglich war. Pascal ist von Anfang an so wie er ist, ein SPM mit 640 SPs, derer maximal 6 macht 3840 Shader. Mehr wird es definitiv nicht geben und die darunter werden sich alle aus einem Vielfachen aus 640 zusammensetzen, also GP107 mit 640 Shadern, GP106 (200mm² durch Fotoschätzung halbwegs bestätigt) mit 1280 Shadern, GP104 (300mm² durch Leak halbswegs bestätigt) mit 1920 Shadern und GP102 (~ 500mm²) mit 3840 Shadern. Ich find das mittlerweile wenig spekulativ sondern viel mehr offensichtlich, wie die Dinger aussehen werden. Und nein, die werden mit AsyncCompute keine Probleme mehr haben. Die haben ein neues Frontend, das offenbar erheblich mehr Transistoren braucht und das durch den neuen Organisationsaufbau als bestätigt angesehen werden kann.
#48
customavatars/avatar97158_1.gif
Registriert seit: 19.08.2008
Magdeburg
Oberbootsmann
Beiträge: 934
Zitat BrahmandYaatra;24473524
...
Vielleicht komme ich dann nächstes Jahr sogar mal dazu Skyrim weiterzuspielen, bislang gibt es keine GPU die das in meinen Einstellungen schafft.


Recht gebe ich Dir, meine liebsten Einstellungen schaffen nicht mal zwei 980Ti. Aber jetzt kann man wieder träumen ......
#49
Registriert seit: 08.11.2015

Leutnant zur See
Beiträge: 1040
Zitat madpenguin;24483837
Ich erwarte keine consumer Grafikkarten mit HBM2 vor Weihnachten oder Anfang 2017. Weder bei der einen, noch bei der anderen Seite.


Weihnachten 2017 dann wohl eher. Samsung sprach was von 2018 für den Mainstream (Consumer) Markt: [ATTACH=CONFIG]358235[/ATTACH]

Zitat [HOT];24484880
...Pascal ist von Anfang an so wie er ist, ein SPM mit 640 SPs, derer maximal 6 macht 3840 Shader. Mehr wird es definitiv nicht geben und die darunter werden sich alle aus einem Vielfachen aus 640 zusammensetzen, also GP107 mit 640 Shadern, GP106 (200mm² durch Fotoschätzung halbwegs bestätigt) mit 1280 Shadern, GP104 (300mm² durch Leak halbswegs bestätigt) mit 1920 Shadern und GP102 (~ 500mm²) mit 3840 Shadern. Ich find das mittlerweile wenig spekulativ sondern viel mehr offensichtlich, wie die Dinger aussehen werden.


Was ist dann der GM204 Nachfolger? Dachte der GP104 ist es, der ist dann aber deinem Spekulazius nach ja aber wohl etwas mickrig gebacken. Dachte da mehr an sowas mit 4 Cluster mit 4 Mem-Controllern...
#50
customavatars/avatar99457_1.gif
Registriert seit: 26.09.2008
Köln
Super Moderator
Random cool Title
Frau Fust
Beiträge: 2797
Mainstream würde ich hier eher so deuten, dass HBM in allen Leistungsklassen Einzug erhält und GDDR komplett verdrängt. Entsprechende Enthusiasten Karten ala Titan/Ti werden schon davor kommen.
#51
Registriert seit: 08.11.2015

Leutnant zur See
Beiträge: 1040
Dann könnten sich Hynix und Crucial und CO. aber auch GDDR5X sparen. Immerhin wäre das dann ja nur eine GPU Generation von Nvidia und AMD, die damit laufen würde. Ich glaube selbst als Interim ist GDDR5X wohl mehr als 1 Jahr zugedacht (Massproduction soll laut Crucial ja erst im 3.Quartal 2016 starten)...mal abwarten.
#52
customavatars/avatar3377_1.gif
Registriert seit: 15.11.2002
www.twitter.com/aschilling
[printed]-Redakteur
Tweety
Beiträge: 29102
NVIDIA veröffentlicht Whitepaper zur Pascal-Architektur bzw. GP100-GPU - Hardwareluxx
#53
Registriert seit: 18.02.2005
Oldenburg
Korvettenkapitän
Beiträge: 2103
NVIDIA's Full Fat Pascal GP104 GPU Pictured With GDDR5X Memory - Features 8 GB Micron Chips To Drive GeForce GTX 1080 Cards
#54
customavatars/avatar160319_1.gif
Registriert seit: 17.08.2011

Vizeadmiral
Beiträge: 7754
schicker Chip :)
#55
customavatars/avatar156115_1.gif
Registriert seit: 28.05.2011

Stabsgefreiter
Beiträge: 268
Nvidia Geforce GTX 1080: Foto zeigt vermutlich Custom-Version von MSI
Um Kommentare schreiben zu können, musst Du eingeloggt sein!

Das könnte Sie auch interessieren:

Roundup: 5x GeForce GTX 1070 mit Custom-Design im Test

Logo von IMAGES/STORIES/GALLERIES/REVIEWS/2016/5X-GTX1070/GTX1070_CUSTOM_ROUNDUP-TEASER

Nachdem wir bereits eine Reihe von Boardpartner-Karten der NVIDIA GeForce GTX 1080 ausführlich getestet haben, holen wir gleiches nun für das kleinere Schwestermodell nach, denn auch von der NVIDIA GeForce GTX 1070 gibt es viele Custom-Modelle mit höheren Taktraten, eigenen Kühlsystemen und... [mehr]

Drei Custom-Modelle der GeForce GTX 1060 im Test

Logo von IMAGES/STORIES/GALLERIES/REVIEWS/2016/3X-GTX1060/GTX1060_ROUNDUP_TEST-TEASER

Anders als bei der GeForce GTX 1080 und GeForce GTX 1070 trudelten wenige Stunden nach unserem Test zur Founders Edition der NVIDIA GeForce GTX 1060 schon die ersten Boardpartner-Karten mit teils höheren Taktraten, eigenem Kühlsystem und überarbeitetem Platinenlayout ein. Sie dürften... [mehr]

NVIDIA GeForce GTX 1080 mit Pascal-Architektur im XXL-Test

Logo von IMAGES/STORIES/LOGOS-2016/GEFORCE-GTX-1080

Heute ist es soweit: NVIDIA läutet mit der GeForce GTX 1080 und GTX 1070 auf Basis der Pascal-Architektur den diesjährigen Neustart bei den Grafikkarten ein. In Kürze wird wohl auch AMD seinen Beitrag zu diesem Thema leisten. Vor zehn Tagen lud NVIDIA die gesammelte Fachpresse nach Austin ein... [mehr]

Roundup: 5x GeForce GTX 1080 im Custom-Design im Test

Logo von IMAGES/STORIES/LOGOS-2016/GEFORCE-GTX-1080

Nachdem wir uns die Founders Edition der GeForce GTX 1080 und GeForce GTX 1070 bereits angeschaut haben, folgen nun fünf Retail-Modelle, die wir in aller Ausführlichkeit unter die Lupe nehmen wollen. Aus den vielen Boardpartnern und unterschiedlichen Modellen haben wir uns solche von ASUS, EVGA,... [mehr]

AMD Radeon RX 480 im Test

Logo von IMAGES/STORIES/GALLERIES/REVIEWS/2016/RADEON-RX480/RADEON-RX480-REFERENCE-LOGO

Es ist also soweit: AMD startet die großangelegte Zurückeroberung des Grafikkartenmarktes mit der Radeon RX 480, die als erste Grafikkarte der Polaris-Generation mit gleichnamiger Architektur erscheint und die wir uns genauer anschauen können. Dabei versucht sich AMD an einem anderen Ansatz im... [mehr]

PowerColor Radeon RX 480 Red Devil im Test

Logo von IMAGES/STORIES/GALLERIES/REVIEWS/2016/POWERCOLOR-RX480/POWERCOLOR-RX480REDDEVIL-LOGO

Mit der Radeon RX 480 will AMD zurück zu alter Stärke und hat daher über Monate hinweg die PR-Trommel geschlagen. Letztendlich dabei herausgekommen ist eine sehr gute Karte für einen niedrigen Preis, die aber nicht in allen Bereichen zu überzeugen weiß. Wohl größtes Manko der Karte sollte... [mehr]