Jeder Prozess ist hier nachvollziehbar. Die Energie, die für den Tunneleffekt nötig ist, stammt aus der thermischen Energie. Die W'keit (=Wahrscheinlichkeit), dass Ladungsträger im Halbleiter ins Leitungsband geraten und nicht ortsfest (nicht mehr an die Atomrümpfe gebunden) sind, ist temperaturabhängig und mit einfacher Mathematik erklärbar. Wer also zwei e-Funktionen addieren, und mit einem einfachen Bruch hantieren kann, der braucht nur noch die geistige Transferleistung diese Mathematik auf eine einfache Wellengleichung zu übertragen. In der Summe war das die große geistige Leistung von Planck, Heisenberg, Schrödinger... Einstein... die Liste ist nicht vollständig. Der Tunneleffekt ist jedoch nicht nur für die Leitung der Ladungsträger innerhalb der dotierten Halbleiterschichten einer Flash-Zelle verantwortlich, sondern auch um über die isolierende Siliziumdioxidschicht einen Strom zu übertragen, der das Floating Gate abseits der Schreibvorgänge isoliert und so über ihr Potential die Information speichert. Ist es kälter, sind bei gleicher Spannung, die die Niveaus der Energiebarrieren definiert, statistisch weniger Ladungsträger in der Lage zu tunneln als bei hoher Temp. Das erklärt, warum bei höherer Temp das Floating Gate mit mehr Ladungsträgern geladen wird, als bei kalten Temps. Das "Altern" der Daten ist nun ein Ergebnis davon, dass die Ladungsträger leider auch, zwar mit deutlich niedrigerer W'keit, durch die Oxidschicht tunneln und so das Floating Gate wieder über die Zeit seinen Ladungszustand verliert. Ist es nun kälter (=Lagerung der SSD im ungenutzten Zustand) bleiben die Daten länger erhalten, als wenn es warm ist. Alles richtig! Wenn ich die SSD bei kälteren Temps betreibe, ist es auch nachvollziehbar, dass bei einem Schreibvorgang ebenfalls das Floating Gate weniger stark geladen wird, was dann im Off-Zustand ebenfalls die Zeit schmälert, was die "retention time" der Daten angeht.
Zusammenfassung: wenn ich bei höheren Temperaturen eine SSD beschreibe und danach bei kalten Temperaturen lagere, dann halten die Daten am längsten.
Zur Alterung der Flash Zelle: hier kann ich mir nur einen Prozess vorstellen, der die Zelle über die Zeit zerstört: Diffusion im Festkörper. Dieser Prozess ist nun wiederum von 2 Faktoren abhängig; Temperatur und elektrochemisches Potential. Ist die Temperatur hoch, können sich Mischkristalle, die sich in einem metastabilen Zustand befinden, also eigentlich nicht stabil sind, sondern nur "eingefrohren" entmischen. Gleiches gilt für Fremdatome und Leerstellen, die bei höheren Temps mobiler werden (bezogen auf die Dotierung von Halbleitern). Siliziumdioxid als Isolationsschicht des Floating Gate ist definitiv kein Material einer Atomsorte, sondern Silizium und Sauerstoff (SiO2), die ein definitiv nicht perfekten Kristall abgeben (sind makroskopisch gesehen amorph, aber für Kleinstrukturen gerade für die Betrachtung der Brillouin Zonen gilt die Si02-Kristallstruktur). Fehler in Kristallen können allerdings auch dazu führen, dass Diffusionsprozesse noch schneller ablaufen, weil die Spannungsfelder als quasi-Leiterbahnen für Atomrümpfe dienen. Beispiel: Das passiert ganz schlimm mit Wasserstoff in hochlegierten Stählen. Stähle sind kein reines Eisen, in dem die Diffusion von Protonen recht langsam ist. Stähle haben durch Schmieden eine extreme Versetzungsdichte, gleichbedeutend die Dichte der Spannungsfelder erhöht, ein Abscheren eines Kristalls also enorm erschwert. Stähle haben auch Fremdatome in der richtigen Konzentration inne (Kohlenstoff), die gewisse Strukturen schafft, die die Spannungsfelddichte weiter erhöht. Genau in diesen Spannungsfeldern kann sich aber bei der Diffusion Wasserstoff schnell bewegen und die Spannungsfelder durch sein eigenes Potential schwächen. Folge: Kugellagerstahl wird brüchig, Windkraftanlagenlager versagen, Stehbolzen, die einen Zylinderkopf am Block festhalten brechen... etc. Dieser Prozess mit anderen Atomsorten findet nun auch in der Siliziumdioxidschicht unseres Floating Gates in der Flash Zelle statt, ob nun direkt in der Kristallstruktur oder an den Rändern der Kristalle, die die amorphe makroskopische Struktur wiedergeben. Und auch hier ist es so, je wärmer, desto schneller die Diffusion, desto schneller ist die Siliziumdioxid-Schicht "kaputt". Die Mobilität von Atomrümpfen ist also besser, je höher die Temp ist, getrieben wird das ganze durch ein elektrochemisches Potential und dieses ist auch der Grund, warum bei vielen Schreibvorgängen die SSD leidet, weil durch die äußere Spannung genau dieses Potential beeinflusst wird und die Richtung der Diffusion, wie auch die Geschwindigkeit bedingt. Welcher Prozess soll also diesen Sachverhalt genau umdrehen, dass die Schicht länger hält, wenn es wärmer ist?